Molecular Association of K-Vitamins with Biologically occurring molecules. Part 1. A Study of the Association Properties of the Quinone Moiety

Asok K. Mukherjee ${ }^{\text {a }}$ and Apurba K. Chattopadhyay ${ }^{\text {b }}$
${ }^{a}$ Chemistry Department, Burdwan Raj College, Burdwan 713 104, West Bengal, India
b Zoology Department, Burdwan Raj College, Burdwan 713 104, West Bengal, India

Abstract

The p-benzoquinone ($p \mathrm{BQ}$) moiety is known to be involved in many biochemical processes and since this moiety occurs in the structure of the K-vitamins, it was felt necessary to study the molecular association of the $p \mathrm{BQ}$ moiety. This paper deals with the stability constants and the nature of the binding in some molecular associations of $p \mathrm{BQ}$ with carboxylate ions in an aqueous medium and of 1,4-naphthaquinone with resorcinol in dioxane. We observed that $p B Q$ in water is strongly hydrated and that carboxylate ions slowly displace the water molecules in the hydration sphere and bind to $p \mathrm{BQ}$ in a $1: 1$ stoichiometry. The $n-\pi^{*}$ band of $p \mathrm{BQ}$ in water is shown to be blue-shifted (from the Franck-Condon principle) when a $p \mathrm{BQ}$-carboxylate association is formed. 1,4-Naphthaquinone, which is sparingly soluble in water (like the K-vitamins) forms a $1: 1 \pi$-CT complex with resorcinol in a dioxane medium. The stoichiometries have been determined spectrophotometrically using the Benesi-Hildebrand equation and Job's continuous variation method. The formation constants of the ion-molecule and molecule-molecule associations are reported.

A quinonoid ring is common to many biomolecules, e.g., ubiquinone and the K -vitamins. ${ }^{1}$ The former acts as a coenzyme and the latter occurs in blood prothrombin, having an important, but not completely understood, role in blood coagulation. ${ }^{2}$ In the Michaelis-Menten mechanism ${ }^{3}$ of enzyme catalysis, the stability constant of the enzyme-substrate (ES) association is an important parameter in determining the rate of enzyme-catalysed reactions. It is also known that some enzymes (E), known as 'apoenzymes', catalyse biochemical grouptransfer reactions only in combination with some 'coenzymes' (C) or 'prosthetic groups' (P) and the initial step is the reversible formation of the molecular association (EC or EP); $\mathrm{E}+\mathrm{C}($ or P$) \rightleftharpoons \mathrm{EC}($ or EP$)$.
According to Heathcote and Slifkin, ${ }^{4}$ the EP association is much stronger than the EC. The stability constant of the molecular associations is therefore important not only for a distinction to be made between coenzymes and apoenzymes but also for a detailed kinetic study and proper understanding of enzymatically-catalysed reactions. To this end we have determined the stability constants of both p-benzoquinonecarboxylate ion associations in an aqueous medium and of the water-insoluble 1,4-naphthaquinone (part of the K -vitamin structure with a $p \mathrm{BQ}$ moiety) associated with resorcinol in a dioxane medium.
The study of $p \mathrm{BQ}$ adducts is also biologically important, e.g., Pryor et al. ${ }^{5}$ have shown that among the four carcinogenic cigarette tars the predominant one is a complex between $p \mathrm{BQ}$ and hydrocarbon groups in a polymeric matrix. $p \mathrm{BQ}$ is also reported ${ }^{6,7}$ to act as a cyclic dienophile in the Diels-Alder reaction, where a charge-transfer (CT) complex is a probable intermediate in a benzene medium. These facts have drawn the attention of recent theoretical chemists with a view to investigating the ground and excited states of $p \mathrm{BQ} .^{8}$

We have been interested in studying the $p \mathrm{BQ}$-adducts in water because almost all biochemical reactions occur in aqueous media. The 1,4 -naphthaquinone adduct has been studied in dioxane because, like the K -vitamins, it is almost insoluble in water (fat soluble), and our ultimate aim is to study the molecular association of K -vitamins with some biologicallyoccurring molecules.

Experimental

$p \mathrm{BQ}$, resorcinol and 1,4-naphthaquinone were commercial reagents from E. Merck and were purified by sublimation just before use. G.R. grade sodium acetate (E. Merck) was used without further purification. Sodium formate and sodium propionate were freshly crystallised before use. The concentrations of the prepared salt solutions were determined by conductometric titration with standard $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution. Dioxane, a solvent for 1,4 -naphthaquinone, was purified by refluxing the A.R. grade material with KOH pellets and then distilling just before use. Spectral measurements were performed on a Hilger (UVSpek) model spectrophotometer.
For determining the stability constants and stoichiometries of the ion-molecule and molecule-molecule associations, the Benesi-Hildebrand ${ }^{9,10}(\mathrm{BH})$ equation was used in a modified form. In the case of $p \mathrm{BQ}$-acetate ion association, Job's continuous variation method ${ }^{11}$ was attempted.

Results and Discussion

Case 1. pBQ Carboxylate Ion Associations.-In an attempt to determine the stability constant of quinhydrone, a known molecular complex of $p \mathrm{BQ}$ and hydroquinone, by a potentiometric method using varying concentrations of $p \mathrm{BQ}$ and hydroquinone in sodium acetate-acetic acid buffer solutions of differing pH values, the emf data were found to be inexplicably scattered and time dependent. The colour of the solutions was also found to gradually deepen towards reddish brown. To examine which species in the buffer was responsible for this, $p \mathrm{BQ}$ solutions were mixed with the buffer solution and its components, i.e., acetic acid and sodium acetate, separately, using the same molar concentration of $p \mathrm{BQ}$. After 2 h it was found that the intensity of the reddish-brown colour was at a maximum in the sodium acetate solution, intermediate in the buffer solution and practically negligible in the acetic acid solution. This indicated that the acetate ion must be responsible for the development of colour.
$p \mathrm{BQ}$ is known to be reduced to semiquinone radical ${ }^{12}$ in alkali media. There is also considerable evidence to suggest that $p \mathrm{BQ}$ is photochemically reduced. ${ }^{13-17}$ However, the colour

Fig. 1 Spectra of aqueous solutions of (a) $p \mathrm{BQ}$ at $2.7104 \times 10^{-3} \mathrm{~mol}$ dm^{-3} and (b) $p \mathrm{BQ}$ at $2.7104 \times 10^{-3} \mathrm{~mol} \mathrm{dm}{ }^{-3}+\mathrm{CH}_{3} \mathrm{COONa}$ at $8.1312 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

Table 1 Absorbances of mixtures of $p \mathrm{BQ}(\mathrm{A})$ and sodium formate (D) in aqueous media at $26^{\circ} \mathrm{C}$

$\begin{aligned} & C_{\mathrm{A}}^{\circ} / 10^{-3} \\ & \mathrm{~mol} \mathrm{dm}^{-3} \end{aligned}$	$\begin{aligned} & C_{\mathrm{D}}^{\circ} / 10^{-2} \\ & \mathrm{~mol} \mathrm{dm} \end{aligned}$	Absorbance		
		500 nm	470 nm	450 nm
$2.1924{ }^{\text {a }}$	20.11032	0.191	0.195	0.195
	17.87584	0.177	0.180	0.180
	15.64136	0.172	0.175	0.179
	13.40688	0.162	0.163	0.168
	11.72400	0.149	0.154	0.158
	8.93792	0.127	0.132	0.135
$4.3848{ }^{\text {b }}$	17.87584	0.366	0.372	0.381
	15.64136	0.346	0.352	0.360
	13.40688	0.322	0.328	0.336
	11.72400	0.294	0.300	0.307
	8.93792	0.260	0.265	0.272
	6.70344	0.218	0.222	0.229

${ }^{a}$ At 500 nm , slope $S=2.4253 \pm 0.107$, intercept $I=-7.7657 \pm$ 0.675 , correlation coefficient $C=1.00$; at $470 \mathrm{~nm}, S=2.6500 \pm 0.106$, $I=-8.7830 \pm 0.651, \quad C=1.00 ;$ at $450 \mathrm{~nm}, \quad S=2.8343 \pm 0.186$, $I=-9.6104 \pm 1.120, C=0.99 .{ }^{b}$ At $500 \mathrm{~nm}, S=5.0338 \pm 0.127$, $I=-8.2340 \pm 0.443, \quad C=1.00 ;$ at $470 \mathrm{~nm}, \quad S=5.1484 \pm 0.122$, $I=-8.2962 \pm 0.416, \quad C=1.00 ;$ at $450 \mathrm{~nm}, \quad S=5.3436 \pm 0.131$, $I=-8.5045 \pm 0.438, C=1.00$.
reported in the present paper develops in acidic media and also in the absence of reducing substances in the dark. Fig. 1 shows the spectra of a $p \mathrm{BQ}$ solution and a $p \mathrm{BQ}$-sodium acetate mixture in aqueous media against water as a reference. The mixture shows a new absorption band with a shoulder at 390 nm .

Absorbances at a number of wavelengths measured under BH

Table 2 Absorbances of mixtures of $p \mathrm{BQ}$ (A) and sodium acetate (D) in aqueous medium at $26^{\circ} \mathrm{C}$

		Absorbance			
$C_{\mathrm{A}}^{\circ} / 10^{-3}$ $\mathrm{~mol} \mathrm{dm}^{-3}$	$C_{\mathrm{D}}^{\circ} / 10^{-2}$ mol dm				
2.4574^{a}	4.75340	500 nm	470 nm	450 nm	
	4.15923	0.321	0.335	0.345	
	3.56505	0.272	0.295	0.289	
	2.97088	0.235	0.241	0.290	
	2.37670	0.202	0.207	0.210	
3.6861^{b}	4.15923	0.356	0.370	0.381	
	3.56505	0.380	0.396	0.415	
	2.97088	0.315	0.329	0.350	
	2.37670	0.267	0.277	0.283	
	1.78252	0.225	0.230	0.238	

${ }^{a}$ At $500 \mathrm{~nm}, S=11.6066 \pm 0.522, I=-15.4073 \pm 2.060, C=1.00 ;$ at $470 \mathrm{~nm}, S=11.5632 \pm 0.677, I=-13.8870 \pm 2.592, C=1.00$; at $450 \mathrm{~nm}, S=11.2990 \pm 1.124, I=-11.7292 \pm 4.192, C=1.00 .{ }^{b}$ At $500 \mathrm{~nm}, S=16.8718 \pm 2.019, I=-19.8965 \pm 6.912, C=0.98$; at $470 \mathrm{~nm}, S=16.8213 \pm 1.979, I=-17.8007 \pm 6.555, C=0.98$; at $450 \mathrm{~nm}, S=16.8628 \pm 2.338, I=-15.9191 \pm 7.467, C=0.97$.

Table 3 Absorbances of mixtures of $p \mathrm{BQ}$ (A) and sodium propionate (D) in aqueous medium at $26^{\circ} \mathrm{C}$

$\begin{aligned} & C_{\mathrm{A}}^{\circ} / 10^{-3} \\ & \mathrm{~mol} \mathrm{dm} \end{aligned}$	$\begin{aligned} & C_{\mathrm{D}}^{\circ} / 10^{-2} \\ & \mathrm{~mol} \mathrm{dm} \end{aligned}$	Absorbance	
		470 nm	450 nm
1.726315^{a}	16.0256	0.604	0.710
	12.6344	0.568	0.685
	11.3999	0.551	0.648
	10.4717	0.536	0.630
	8.3335	0.495	0.582
	4.7619	0.386	0.454
	4.2135	0.362	0.426
$3.45263^{\text {b }}$	10.4717	1.072	1.110
	8.3335	1.010	1.025
	4.7619	0.773	0.800
	4.2135	0.725	0.750
	2.1929	0.483	0.500
	1.8907	0.435	0.450
	1.6129	0.386	0.400

${ }^{a}$ At $470 \mathrm{~nm}, S=15.8406 \pm 0.002, I=-19.9873 \pm 0.003, C=1.00$; at $450 \mathrm{~nm}, S=18.3849 \pm 0.307, I=-19.4666 \pm 0.548, C=1.00 .{ }^{b}$ At $470 \mathrm{~nm}, S=31.5422 \pm 0.139, I=-19.6626 \pm 0.246, C=1.00$; at $450 \mathrm{~nm}, S=32.8008 \pm 0.000, I=-20.0008 \pm 0.001, C=1.00$.
conditions, e.g., [salt] $\gg[p \mathrm{BQ}]$, are given in Tables 1-3 for mixtures of $p \mathrm{BQ}$ with sodium formate, sodium acetate and sodium propionate, respectively. A rearranged form of the BH equation (1), which is known to be valid for $1: 1$ molecular

$$
\begin{equation*}
1 / C_{\mathrm{D}}^{\circ}=K \varepsilon C_{\mathbf{A}}^{\circ} l / \mathrm{A}-K \tag{1}
\end{equation*}
$$

complexes, ${ }^{18}$ was tried with the experimental data. In eqn. (1), C_{D}° is the initial concentration of the salt and C_{A}° that of $p \mathrm{BQ}$ in the mixture; A is the absorbance of the mixture measured against the aqueous $p \mathrm{BQ}$ solution as reference; ε is the difference in molar extinction coefficients of the molecular complex and $p \mathrm{BQ} ; l$ is the cell-length and K is the stabilityconstant of the molecular association. Fig. 2 shows that the plot of $1 / C_{\mathrm{D}}^{\circ}$ vs. $1 / A$ for the $p \mathrm{BQ}$-sodium acetate system is linear. Similar linear plots are obtained for all the systems studied. The slopes, intercepts and correlation coefficients are shown in the Tables. We observed that the intercepts are almost independent of the initial concentrations of $p \mathrm{BQ}$ and also of the wavelengths of measurement. This demonstrates that only 1:1 complexes are

Fig. 2 Benesi-Hilderbrand plot of the $p \mathrm{BQ}-\mathrm{CH}_{3} \mathrm{COONa}$ system at 500 nm at two initial concentrations of $p \mathrm{BQ}$

Fig. 3 Continuous-variation plot of the $p \mathrm{BQ}-\mathrm{CH}_{3} \mathrm{COONa}$ system at $500 \mathrm{~nm} ;[p \mathrm{BQ}]+\left[\mathrm{CH}_{3} \mathrm{COONa}\right]=1.08416 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$

Table 4 Data of continuous variation experiment with a mixture of $p \mathrm{BQ}$ and sodium acetate $(\mathrm{NaAc}) .[p \mathrm{BQ}]+[\mathrm{NaAc}]=1.08416 \times 10^{-2}$ $\mathrm{mol} \mathrm{dm}^{-3}$

$\frac{[p \mathrm{BQ}]}{[p \mathrm{BQ}]+[\mathrm{NaAc}]}$	Absorbance $(500 \mathrm{~nm})$
0.125	0.158
0.250	0.253
0.375	0.292
0.500	0.313
0.625	0.296
0.750	0.264
0.875	0.175

Table 5 Stability constants and molar extinction coefficients of the complexes of $p \mathrm{BQ}$ with carboxylate ions in aqueous medium

Carboxylate ion	$K / \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ (wavelength in nm)	$\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ (wavelength in nm)
Formate	$8.0(500), 8.5(470)$,	$142(500), 142(470)$, Acetate
	$9.0(450)$	
Propionate	$14(500), 15.8(470)$,	$258(450)$
	$19.8(470), 19.7(450)$	$320(450), 286(470)$,
		$464(470), 533(450)$

formed between $p \mathrm{BQ}$ and carboxylate ions in aqueous solution under the experimental conditions. Fig. 3 shows the Job curve

Table 6 UV spectral data for 1,4-naphthaquinone and resorcinol ${ }^{31}$

Compound	Solvent	$\lambda / \mathrm{nm}(\log \varepsilon)$
Resorcinol	MeOH	$276.5(3.33), 283(3.26), 237(3.85)$
	EtOH	$277(3.34)$
1,4-Naphthaquinone	MeOH	$250(4.6), 330(3.8)$
	EtOH	$246(4.34), 251(4.34), 260(4.05)$,
		$338(3.5)$
Dioxane		$249(4.3), 327$ (3.5) liquid phase
		$180(3.8)$ vapour phase

for the $p \mathrm{BQ}$-sodium acetate system, which clearly establishes the $1: 1$ stoichiometry of the molecular association between $p \mathrm{BQ}$ and acetate ions. Experimental data for the continuous variation experiment are shown in Table 4. Values of stability constants and molar extinction coefficients at a number of wavelengths are given in Table 5.

Proof that the carboxylate ion associates itself with $p \mathrm{BQ}$ is further provided from the fact that when $c a .0 .5 \mathrm{~g}$ of $p \mathrm{BQ}$ is dissolved in $50 \mathrm{~cm}^{3}$ of $1 \mathrm{~mol} \mathrm{dm}^{-3}$ acetic acid solution, the conductance of the solution slowly rises at room temperature, the change being observable at intervals of 30 min . The association of acetate ions to $p \mathrm{BQ}$ shifts the dissociation equilibrium of acetic acid to the right and releases $\mathrm{H}_{3} \mathrm{O}^{+}$, thus increasing the conductance.
The stability constants of the molecular associations as found from the BH plots increase with increasing chain length of the carboxylate ion. Moreover, the extinction coefficients also increase with increasing stability constant. These facts ${ }^{19}$ suggest that the new absorption bands that appear on mixing the components might be of charge-transfer type. However, the centres of the shoulders observed for the three carboxylates are almost at the same position (393 nm for formate and 389 nm for propionate) and do not change systematically with the ionisation potentials of the carboxylate ions (which should run parallel to the $\mathrm{p} K_{\mathrm{a}}$ values of the corresponding acids) as required by Mulliken's theory. ${ }^{20}$ Therefore the observed new bands are the blue-shifted $n-\pi^{*}$ bands of $p \mathrm{BQ}$ rather than CT bands. The force binding the carboxylate ion to the $p \mathrm{BQ}$ molecule in the ground state is presumably ion-induced dipole attraction as stressed by Briegleb. ${ }^{21,22}$ In the excited state the π-electron density at different carbon atoms in $p \mathrm{BQ}$ changes and a different orientation of the carboxylate ion is needed to stabilise the excited state. But this is not possible in the time the electronic excitation occurs, according to the Franck-Condon principle. The orientation of the carboxylate ion with respect to the $p \mathrm{BQ}$ molecule thus stabilises the ground state but destabilises the excited state ${ }^{23}$ and a blue-shift of the $n-\pi^{*}$ band of $p \mathrm{BQ}$ results.
Although most of the molecular complexes so far reported in the literature are formed almost instantaneously on mixing the components, there is also evidence ${ }^{24}$ of slow formation. The $\mathrm{n}-\pi^{*}$ band of $p \mathrm{BQ}$ in aprotic media such as acetone has a maximum at 455 nm but in aqueous solution the band shifts to 420 nm . This is clearly a Franck-Condon shift resulting from ground-state hydration of $p \mathrm{BQ}$ through hydrogen bonding as reported by Brearly and Kasha. ${ }^{25}$ The slowness of the formation of the ion-molecule association under study may be due to slow desolvation of the aquated molecules of the components before interaction; a thorough kinetic study, however, is necessary to support this view. The formation of a Meisenheimer type of complex should not be ignored, but this is hardly possible because such a species is known ${ }^{26-28}$ to form between very strong acceptors (like s-trinitrobenzene derivatives) and very strong electron donors (such as ethoxide ions).

Table 7 Optical data for spectrophotometric determination of stability constant and calculated results. Cell length $=1 \mathrm{~cm} ; T=30^{\circ} \mathrm{C} ;[1,4-$ naphthaquinone] $=1.34987 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

[Resorcinol]/ $\mathrm{mol} \mathrm{dm}^{-3}$	Absorbance		$K / \mathrm{dm}^{3} \mathrm{~mol}^{-1}$		$\varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$	
	$350 \mathrm{~nm}^{\text {a }}$	$360 \mathrm{~nm}^{\text {b }}$	350 nm	360 nm	350 nm	360 nm
0.29145	0.166	0.123				
0.25502	0.156	0.114				
0.21859	0.150	0.106	4	4	231	168
0.18216	0.131	0.096				
0.14572	0.115	0.089				
0.10929	0.095	0.068				

${ }^{a}$ At $350 \mathrm{~nm}, S=1.2505 \pm 0.037, I=-4.0069 \pm 0.289, C=1.00 .{ }^{b}$ At $360 \mathrm{~nm}, S=0.8939 \pm 0.062, I=-3.7687 \pm 0.665, C=0.99$.

Fig. 4 Spectrum of a mixture of resorcinol and 1,4-naphthaquinone in dioxane. [Recorcinol] $=0.29145 \mathrm{~mol} \mathrm{dm}^{-3} ;[1,4$-naphthaquinone $]=$ $0.1114 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$.

Case 2. 1,4-Naphthaquinone-resorcinol Association in Dioxane.-Fig. 4 shows the charge-transfer band of a resorcinol-1,4-naphthaquinone mixture in dioxane. The blank used in the measurement was a solution of 1,4-naphthaquinone in dioxane at the same molar concentration as in the mixture. None of the three components resorcinol, dioxane and 1,4naphthaquinone had any absorption peak in the $345-370 \mathrm{~nm}$ region as shown in Table 6. This means that the band shown in Fig. 4 with an absorption maximum at 350 nm is a new band characteristic of the mixture. It may not be regarded as the $\lambda=327 \mathrm{~nm}$ band of 1,4 -naphthaquinone in dioxane perturbed by resorcinol because the intensity of the 327 nm peak of $1,4-$ naphthaquinone in dioxane $(\varepsilon=3162)$ is $c a$. 25 times higher than that of the 350 nm peak of the mixture (apparent ε, obtained from the BH plot, $=123$). It is, therefore, quite reasonable to believe that this new peak is due to a chargetransfer type of transition since quinones are known to act as good electron acceptors ${ }^{29}$ and recorcinol as donors. ${ }^{30}$

The graphical plot of experimental data given in Table 7 is linear according to eqn. (1) and the slopes and intercepts at the different wavelengths of measurement are also given in this Table. The results suggest that a $1: 1$ molecular association is definitely formed between resorcinol and 1,4-naphthaquinone, and the intercept gives the stability constant, K.

The constancy of K (at nearly $4 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$) with respect to changes in wavelength is expected since it is a purely thermodynamic quantity and points to the fact that molecular adducts of stoichiometries other than $1: 1$ are not formed in this case. The small value of K (as compared to 10^{10} to 10^{20} for inorganic complexes) and the low free energy of formation $\left(\Delta G^{\circ}=\right.$ $-3.493 \mathrm{~kJ} \mathrm{~mol}^{-1}$) indicates that the association is quite loose, characteristic of EC or EP bindings.

The present work may be regarded as an initial study which points to the possibility of similar involvement of the quinonoid moiety of K -vitamins in forming molecular association with carboxylate ions and other π-type donors in vivo.

Acknowledgements

The authors are grateful to the University Grants Commission, New Delhi, for providing financial assistance to this project and to the learned referees for their valuable comments.

References

1 J. H. Ottaway and D. K. Apps, Biochemistry, ELBS, 1984, 4th edn., p. 35.

2 M. C. Jackson and Y. Nemerson, Annu. Rev. Biochem., 1980, 49, 765.
3 L. Michaelis and M. L. Menten, Biochem., 1913, 49, 333.
4 J. G. Heathcot and M. A. Slifkin, Biochim. Biophys. Acta, 1968, 158, 167.

5 W. A. Pryor, B. J. Haves, P. I. Premovic and D. F. Church, Science, 1983, 220, 425.
6 R. C. Gupta, M. C. Raynor, R. J. Stoodley, M. Z. A. Slawin and D. M. Williams, J. Chem. Soc., Perkin Trans. 1, 1988, 1773.
7 S. Danishefsky, T. Kitahara, C. F. Yan and J. Morris, J. Am. Chem. Soc., 1979, 101, 6996.
8 R. J. Ball and C. Thomson, Theor. Chim. Acta, 1988, 74, 195.
9 H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.
10 J. A. A. Ketelaar, C. Vandestolpe, A. Goudsmit and W. Dzcubas, Recl. Trav. Chim. Pays-Bas, 1952, 71, 1104.
11 P. Job, Ann. Chim., 1928, 9, 113.
12 L. Michaelis, M. P. Schubbert, R. K. Reber, J. A. Kuck and S. Granick, J. Am. Chem. Soc., 1938, 60, 1678.
13 P. Walker, J. Chem. Soc., 1963, 5545.
14 J. Bentel, R. J. Ruszkay and J. F. Brennan, J. Phys. Chem., 1969, 73, 3240.

15 F. Wilkinson, J. Phys. Chem., 1962, 66, 2569.
16 K. Tickle and F. Wilkinson, Trans. Faraday Soc., 1965, 61, 1981.
17 J. F. Brennan and J. Bentel, J. Phys. Chem., 1969, 73, 3245.
18 R. Foster, D. L. Hammick and A. A. Wardley, J. Chem. Soc., 1953, 3817.

19 G. Briegleb and J. Czekalla, Z. Phys. Chem. (Frankfurt), 1960, 24, 37.
20 R. S. Mulliken and W. B. Person, Annu. Rev. Phys. Chem., 1962, 13, 107.

21 G. Briegleb, J. Phys. Chem., Sect B, 1932, 16, 249.
22 G. Briegleb, Zwischenmolekulare Krafte, ed. G. Braun, Kalrsruhe, Germany, 1949.
23 E. M. Kowsower, J. Am. Chem. Soc., 1958, 80, 3253.
24 M. M. Grigis and Z. H. Khalil, Indian J. Chem., Sect. A, 1988, 27, 474.
25 G. J. Brealy and M. Kasha, J. Am. Chem. Soc., 1955, 77, 4462.
26 J. Meisenheimer, Ann., 1902, 323, 305. See also L. J. Andrews and R. M. Keefer, Molecular Complexes in Organic Chemistry, Holden-Day, Inc., San Francisco, 1964, p. 149.
27 L. K. Dyall, J. Chem. Soc., 1960, 5160.
28 R. Foster and R. K. Mackie, J. Chem. Soc., 1963, 3796.
29 M. A. Slifkin and R. H. Walmsley, Spectrochim. Acta, 1970, 26A, 1237.
30 S. Yamashita, T. Hayakawa and O. Toyama, Univ. Bull. Osaka Prefecture, Ser. A, 1959, 7, 201.
31 Organic Electronic Spectral Data, ed. M. J. Kamlet, vol. 1, Interscience, New York, 1957, p. 1208.

Paper 2/009571
Received 7th November 1991
Accepted 25th February 1992

